Package: TSPred 5.1

Rebecca Pontes Salles

TSPred: Functions for Benchmarking Time Series Prediction

Functions for defining and conducting a time series prediction process including pre(post)processing, decomposition, modelling, prediction and accuracy assessment. The generated models and its yielded prediction errors can be used for benchmarking other time series prediction methods and for creating a demand for the refinement of such methods. For this purpose, benchmark data from prediction competitions may be used.

Authors:Rebecca Pontes Salles [aut, cre, cph], Eduardo Ogasawara [ths]

TSPred_5.1.tar.gz
TSPred_5.1.zip(r-4.5)TSPred_5.1.zip(r-4.4)TSPred_5.1.zip(r-4.3)
TSPred_5.1.tgz(r-4.4-any)TSPred_5.1.tgz(r-4.3-any)
TSPred_5.1.tar.gz(r-4.5-noble)TSPred_5.1.tar.gz(r-4.4-noble)
TSPred_5.1.tgz(r-4.4-emscripten)TSPred_5.1.tgz(r-4.3-emscripten)
TSPred.pdf |TSPred.html
TSPred/json (API)

# Install 'TSPred' in R:
install.packages('TSPred', repos = c('https://rebeccasalles.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/rebeccasalles/tspred/issues

Datasets:
  • CATS - Time series of the CATS Competition
  • CATS.cont - Continuation dataset of the time series of the CATS Competition
  • EUNITE.Loads - Electrical loads of the EUNITE Competition
  • EUNITE.Loads.cont - Continuation dataset of the electrical loads of the EUNITE Competition
  • EUNITE.Reg - Electrical loads regressors of the EUNITE Competition
  • EUNITE.Reg.cont - Continuation dataset of the electrical loads regressors of the EUNITE Competition
  • EUNITE.Temp - Temperatures of the EUNITE Competition
  • EUNITE.Temp.cont - Continuation dataset of the temperatures of the EUNITE Competition
  • NN3.A - Dataset A of the NN3 Competition
  • NN3.A.cont - Continuation dataset of the Dataset A of the NN3 Competition
  • NN5.A - Dataset A of the NN5 Competition
  • NN5.A.cont - Continuation dataset of the Dataset A of the NN5 Competition
  • SantaFe.A - Time series A of the Santa Fe Time Series Competition
  • SantaFe.A.cont - Continuation dataset of the time series A of the Santa Fe Time Series Competition
  • SantaFe.D - Time series D of the Santa Fe Time Series Competition
  • SantaFe.D.cont - Continuation dataset of the time series D of the Santa Fe Time Series Competition
  • ipeadata_d - The Ipea Most Requested Dataset
  • ipeadata_d.cont - The Ipea Most Requested Dataset
  • ipeadata_m - The Ipea Most Requested Dataset
  • ipeadata_m.cont - The Ipea Most Requested Dataset

On CRAN:

benchmarkinglinear-modelsmachine-learningnonstationaritytime-series-forecasttime-series-prediction

5.49 score 23 stars 1 packages 90 scripts 615 downloads 1 mentions 97 exports 91 dependencies

Last updated 4 years agofrom:5eea914e17. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winNOTENov 21 2024
R-4.5-linuxNOTENov 21 2024
R-4.4-winNOTENov 21 2024
R-4.4-macNOTENov 21 2024
R-4.3-winNOTENov 21 2024
R-4.3-macNOTENov 21 2024

Exports:%>%AIC_evalAICc_evalanANan.revARIMAarimainterparimapararimaparametersarimapredBCTBCT.revbenchmarkBIC_evalBoxCoxTdetrenddetrend.revDIFDIF.revDiffDIFFDiff.revELMemdEMDemd.reverrorETSevaluateevaluatingfitnessfittestArimafittestArimaKFfittestEMDfittestLMfittestMASfittestPolyRfittestPolyRKFfittestWaveletHWlinearLogLik_evalLogTLogT.revLTMAPEMAPE_evalmarimaparmarimapredmasMASmas.revMAXErrorMAXError_evalminmaxMinMaxminmax.revMLMmlm_ioMLPmodelingMSEMSE_evalNASNMSENMSE_evalNNEToutliers_bppctPCTpct.revplotarimapredpostprocesspreprocessprocessingRBFRFrstRMSE_evalslidingWindowssMAPEsMAPE_evalsubsetsubsettingSVMswSWTensor_CNNTensor_LSTMTFtraintrain_test_subsettspredWaveletTWaveletT.revworkflowWT

Dependencies:backportsbase64encclassclicolorspaceconfigcurldata.tabledotCall64dplyre1071elmNNRcppEMDfansifarverfieldsforecastfracdiffgenericsggplot2gluegtablehereinsightisobandjsonlitekerasKernelKnnKFASlabelinglatticelifecyclelmtestlocfitmagrittrmapsMASSMatrixmgcvModelMetricsMuMInmunsellnlmennetpillarpkgconfigplyrpngprocessxproxypsquadprogquantmodR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppTOMLreticulaterlangRlibeemdrprojrootRSNNSrstudioapisandwichscalesspamstrucchangetensorflowtfautographtfdatasetstfrunstibbletidyselecttimeDatetseriesTTRurcautf8varsvctrsviridisLitewaveletswhiskerwithrxtsyamlzeallotzoo

Readme and manuals

Help Manual

Help pageTopics
Functions for Benchmarking Time Series PredictionTSPred-package
Adaptive Normalizationan an.rev
Time series prediction modelsARIMA ELM ETS HW MLP NNET RBF RFrst SVM Tensor_CNN Tensor_LSTM TF
Interpolation of unknown values using automatic ARIMA fitting and predictionarimainterp
Get ARIMA model parametersarimaparameters
Automatic ARIMA fitting and predictionarimapred
Box Cox TransformationBCT BCT.rev
Benchmarking a time series prediction processbenchmark benchmark.tspred
Time series of the CATS CompetitionCATS
Continuation dataset of the time series of the CATS CompetitionCATS.cont
Detrending Transformationdetrend detrend.rev
Differencing TransformationDiff Diff.rev
Automatic empirical mode decompositionemd emd.rev
Electrical loads of the EUNITE CompetitionEUNITE.Loads
Continuation dataset of the electrical loads of the EUNITE CompetitionEUNITE.Loads.cont
Electrical loads regressors of the EUNITE CompetitionEUNITE.Reg
Continuation dataset of the electrical loads regressors of the EUNITE CompetitionEUNITE.Reg.cont
Temperatures of the EUNITE CompetitionEUNITE.Temp
Continuation dataset of the temperatures of the EUNITE CompetitionEUNITE.Temp.cont
Evaluating prediction/modeling qualityevaluate evaluate.error evaluate.evaluating evaluate.fitness
Evaluate method for 'tspred' objectsevaluate.tspred
Prediction/modeling quality evaluationerror evaluating fitness
Automatic ARIMA fitting, prediction and accuracy evaluationfittestArima
Automatic ARIMA fitting and prediction with Kalman filterfittestArimaKF
Automatic prediction with empirical mode decompositionfittestEMD
Automatically finding fittest linear model for predictionfittestLM
Automatic prediction with moving average smoothingfittestMAS
Automatic fitting and prediction of polynomial regressionfittestPolyR
Automatic fitting and prediction of polynomial regression with Kalman filterfittestPolyRKF
Automatic prediction with wavelet transformfittestWavelet
The Ipea Most Requested Dataset (daily)ipeadata_d ipeadata_d.cont
The Ipea Most Requested Dataset (monthly)ipeadata_m ipeadata_m.cont
Logarithmic TransformationLogT LogT.rev
Time series transformation methodsAN BoxCoxT DIFF EMD LT MAS MinMax NAS PCT subsetting SW WT
MAPE error of predictionMAPE
Get parameters of multiple ARIMA models.marimapar
Multiple time series automatic ARIMA fitting and predictionmarimapred
Moving average smoothingmas mas.rev
Maximal error of predictionMAXError
Minmax Data Normalizationminmax minmax.rev
Time series modeling and predictionlinear MLM modeling
MSE error of predictionMSE
Prediction/modeling quality metricsAICc_eval AIC_eval BIC_eval LogLik_eval MAPE_eval MAXError_eval MSE_eval NMSE_eval RMSE_eval sMAPE_eval
NMSE error of predictionNMSE
Dataset A of the NN3 CompetitionNN3.A
Continuation dataset of the Dataset A of the NN3 CompetitionNN3.A.cont
Dataset A of the NN5 CompetitionNN5.A
Continuation dataset of the Dataset A of the NN5 CompetitionNN5.A.cont
Outlier removal from sliding windows of dataoutliers_bp
Percentage Change Transformationpct pct.rev
Plot ARIMA predictions against actual valuesplotarimapred
Postprocess method for 'tspred' objectspostprocess.tspred
Predict method for 'modeling' objectspredict predict.linear predict.MLM
Predict method for 'tspred' objectspredict.tspred
Preprocessing/Postprocessing time series datapostprocess postprocess.processing preprocess preprocess.processing
Preprocess method for 'tspred' objectspreprocess.tspred
Time series data processingprocessing
Time series A of the Santa Fe Time Series CompetitionSantaFe.A
Continuation dataset of the time series A of the Santa Fe Time Series CompetitionSantaFe.A.cont
Time series D of the Santa Fe Time Series CompetitionSantaFe.D
Continuation dataset of the time series D of the Santa Fe Time Series CompetitionSantaFe.D.cont
sMAPE error of predictionsMAPE
Subsetting data into training and testing setssubset subset.tspred
Generating sliding windows of datasw
Training a time series modeltrain train.linear train.MLM
Get training and testing subsets of datatrain_test_subset
Train method for 'tspred' objectstrain.tspred
Time series prediction processtspred
Automatic wavelet transformWaveletT WaveletT.rev
Executing a time series prediction processworkflow workflow.tspred